
Software Fault Tolerance
via Environmental Diversity

Kishor Trivedi

Dept. of Electrical & Computer Engineering

Duke High Availability Assurance Lab (DHAAL)

Duke University

Durham, NC 27708

ktrivedi@duke.edu

www.ee.duke.edu/~ktrivedi

SERE
July 2, 2014

Copyright © 2014 by K.S. Trivedi

mailto:ktrivedi@duke.edu
http://www.ee.duke.edu/~kt
http://www.ee.duke.edu/~kt

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Pervasive Dependence on Computer
Systems Need for High Reliability/Availability

Health & Medicine
Avionics

Entertainment
Banking

Communication

Basic Definitions

 Steady-state availability (Ass) or just
availability

 Long-term probability that the system is available
when requested:

 MTTF is the system mean time to failure, a
complex combination of component MTTFs

 MTTR is the system mean time to recovery

 - may consist of many phases

MTTR MTTF

MTTF

+
=

ssA

Basic Definitions

 Downtime in minutes per year

 In industry, (un)availability is usually presented in terms of

annual downtime.

 Downtime = 876060 (1- Ass) minutes.

 5 NINES (Ass = 0.99999)  5.26 minutes annual downtime

Number of Nines– Reality Check

 49% of Fortune 500 companies experience at least
1.6 hours of downtime per week

 Approx. 80 hours/year=4800 minutes/year

 Ass=(8760-80)/8760=0.9908

 That is, between 2 NINES and 3 NINES!

 This study assumes planned and unplanned
downtime, together

 Achieving High Availability is a Challenge

Jan. 2014 , Gmail was down for 25 – 50 min.

Oct. 2013, Unavailable services like post photos and “likes”

Jan. 2013, AWS down for an hour approx.

Feb. 2013, Windows Azure down for 12 hours

More Failures

 Black Sept. 2011, In the same week!!!!:
 Microsoft Cloud service outage (2.5 hours)

 Google Docs service outage (1 hour)
 A memory leak due to a software update

 Sept. 2012 GoDaddy (4 hours)
 5 millions of websites affected

 Oct. 2012 Amazon
 10/15/2012 Webservices – 6 hours (Memory leak)

 10/27/2012 EC2 – > 2 hours

 Downtown Costs per Hour
 Brokerage operations $6,450,000

 Credit card authorization $2,600,000

 eBay (1 outage 22 hours) $225,000

 Amazon.com $180,000

 Package shipping services $150,000

 Home shopping channel $113,000

 Catalog sales center $90,000

 Airline reservation center $89,000

 Cellular service activation $41,000

 On-line network fees $25,000

 ATM service fees $14,000

Sources: InternetWeek 4/3/2000; Fibre Channel: A Comprehensive Introduction, R. Kembel
2000, p.8. ”...based on a survey done by Contingency Planning Research."

High Reliability/Availability:
 Software is the problem

 Hardware fault tolerance, fault management,
reliability/availability modeling relatively well
developed

 System outages more due to software faults

Key Challenge:

 Software reliability is one of the
 weakest links in system
 reliability/availability

Software is the problem

1985

2005

Across different industries….

Jim Gray’s paper titled “Why
do computers stop and what can
be done about it?” pointed out
this trend in 1985, followed by
his paper
“A census of tandem system
availability between 1985 and
1990”

Increasing SW Failure Rate?
Planetary Missions Flight Software: A. Nikora of JPL

Mission Name (in launch order)

 Mars Pathfinder CASSINI Mars Mars Stardust Mars Genesis Mars Deep Mars

 Global Climate Polar Odyssey Exploration Impact Reconnaissance

 Surveyor Orbiter Lander Rover Orbiter

The interval
between the
first and last
launch:
8.76 years.

The interval
between successive
launches ranges
from:
23 to 790 days.

Increasing SW Failure Rate?
Planetary Missions Ground Support Software: A. Nikora of JPL

Mission Name (in launch order)

 Mars Pathfinder CASSINI Mars Mars Stardust Mars Genesis Mars Deep Mars

 Global Climate Polar Odyssey Exploration Impact Reconnaissance

 Surveyor Orbiter Lander Rover Orbiter

The interval
between the
first and last
launch: 8.76
years.

The interval
between
successive
launches ranges
from:
23 to 790 days.

Software Reliability: Known Means

 Fault prevention or Fault avoidance

 Fault Removal

 Fault Tolerance

Copyright © 2013 by K.S. Trivedi

Software Reliability

 Fault prevention or Fault avoidance

 Good software engineering practices
 Requirement Elicitation (Abuse Case Analysis – TCS SSA)
 Design Analysis / Review
 Secure Programming Standard & Review
 Secure Programming Compilation
 Software Development lifecycle
 Automated Code Generation Tools (IDE like Eclipse)

 Use of formal methods
 UML, SysML, BPM
 Proof of correctness
 Model Checking (SMART, SPIN)

 Bug free code not yet possible for large scale software systems

 Yet there is a strong need for failure-free system operation

Software Reliability

 Fault prevention or Fault avoidance

 Fault Removal

 Fault Tolerance

Copyright © 2013 by K.S. Trivedi

Software Reliability

 Fault removal
 Can be carried out during

 the specification and design phase

 the development phase

 the operational phase

 Failure data may be collected and used to parameterize a software
reliability growth model to predict when to stop testing

 Software is still delivered with Many bugs either because of
inadequate budget for testing , very difficult to
detect/localize/correct bugs or inadequacy of techniques
employed/known

Software Reliability

 Fault prevention or Fault avoidance

 Fault Removal

 Fault Tolerance

Copyright © 2013 by K.S. Trivedi

Software Reliability

 There are stringent requirements for failure-free
operation of software-based systems – next idea

Software fault tolerance is a potential

solution to improve software reliability in lieu of
virtually impossible fault-free software

Copyright © 2014 by K.S. Trivedi

Software Fault Tolerance
 Classical Techniques

Design diversity
 N-version programming

 Recovery block

 N-self check programming

Expensive (unless based on component-based
design) not used much in practice!

Yet there are stringent requirements for failure-free
operation

Challenge: Affordable Software Fault Tolerance

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

High availability SIP Application Server
Configuration on IBM WebSphere

Blade 4

IP Sprayer-IBM Load

Balancer

-

SIP

IBM PC

Replication

Group 3

Blade 2

Blade 3

Blade 4

Blade 2

AS 1

AS 2

AS 3

AS 4

AS 5

AS 1

AS 4

AS 2

AS 5

AS 6

AS 3

AS 6

Blade 3

Replication Domain 1

Replication Domain 2

Replication Domain 3

SIP

Proxy 1

SIP

Proxy 1

Blade 1

Blade 1

Replication Domain 4

Replication Domain 5

Replication Domain 6

Blade Chassis 1

Blade Chassis 2

Blade 4

Test Driver

Test Driver

Test drivers

DM

AS1 thru AS6 are

Application Server

Proxy1's are Stateless

Proxy Server

PRDC 2008 and
ISSRE 2010
papers

Hardware configuration:
 Two BladeCenter chassis; 4 blades (nodes) on each chassis (1

chassis sufficient for performance)

Software configuration:

 2 copies of SIP/Proxy servers (1 sufficient for performance)

 12 copies of WAS (6 sufficient for performance)

 Each WAS instance forms a redundancy pair (replication

domain) with WAS installed on another node on a different
chassis

 The system has hardware redundancy and software

redundancy

High availability SIP Application
Server configuration on WebSphere

Software Fault Tolerance
 Identical copies of SIP proxy used as backups (hot

spares)

 Identical copies of WebSphere Applications Server (WAS)
used as backups (hot spares)

 Type of software redundancy – (not design diversity)
but replication of identical software copies

 Normal recovery after a software failure

 restart software, reboot node or fail-over to a software replica;
only when all else fails, a “software repair” is invoked

High availability SIP Application
Server configuration on WebSphere

Escalated levels of Recovery (Telco)

The flowchart briefly
depicts the actions
taken for recovery after
a failure is detected. Try
the simplest recovery
method first, then a
more complex etc.

Software Fault Tolerance: New Thinking

Retry, restart, reboot!

 Known to help in dealing with hardware
transients

 Do they help in dealing with failures caused
by software bugs?

 If yes, why?

Software Fault Tolerance: New Thinking

Failover to an identical software replica (that is
not a diverse version)

 Does it help?

 If yes, why?

Twenty years ago this would be considered crazy!

Outline

 Motivation

 A Real System

 Software Fault Classification

 Fighting Bugs: Remove, Retry, Replicate and
Rejuvenate, M. Grottke and K. Trivedi, IEEE Computer
Magazine, Feb. 2007

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Software Faults
main threats to high reliability,

availability & safety

Copyright © 2014 by K.S. Trivedi

IFIP Working Group 10.4 (Laprie)

Failure occurs when the delivered service no longer complies with the
desired output.

Error is that part of the system state which is liable to lead to subsequent
failure.

Fault is adjudged or hypothesized cause of an error.

Faults are the cause of errors that may lead to failures

Fault Error Failure

Need to Classify bug types

 We submit that a software fault tolerance
approach based on retry, restart, reboot or
fail-over to an identical software replica
(not a diverse version) works because of a
significant number of software failures are
caused by Mandelbugs as opposed to the
traditional software bugs now called
Bohrbugs

Example: A bug causing a failure

A Classification of Software Faults

 Bohrbug := A fault that is easily
isolated and that manifests
consistently under a well-defined
set of conditions, because its
activation and error propagation
lack complexity.

 whenever the user enters a negative

 date of birth

 Since they are easily found, Bohrbugs may be detected
and fixed during the software testing phase.

 The term alludes to the physicist Niels Bohr and his
rather simple atomic model.

Mandelbug – Definition

 Mandelbug := A fault whose
activation and/or error
propagation are complex.
Typically, a Mandelbug is
difficult to isolate, and/or the
failures caused by a it are not
systematically reproducible.

 Example: A bug whose

 activation is scheduling-dependent

 The residual faults in a thoroughly-tested piece of
software are mainly Mandelbugs.

 The term alludes to the mathematician Benoît
Mandelbrot and his research in fractal geometry.

 Sometimes called concurrency or non-deterministic
bugs

Mandelbugs complexity factors
 A fault is a Mandelbug if its manifestation is

subject to the following complexity factors
 Long time lag between fault activation and failure

appearance
 Operating environment (OS, other applications

running concurrently, hardware, network…)
 Timing among submitted operations
 Sequencing or Ordering of operations

 A failure due to a Mandelbug may not show up
upon the resubmission of a workload if the
operating environment has changed enough

Examples of Types of Bugs in IT Systems

 Mandelbugs in IT Systems: Trivedi, Mansharamani,
Kim, Grottke, and Nambiar. “Recovery from failures
due to Mandelbugs in IT systems”. PRDC 2011.

 The selected TCS projects ranged across a number of
business systems in the banking, financial,
government, IT, pharmacy, and telecom sector.

Mandelbug reproducibility

 Mandelbugs are really hard to reproduce

 Conducted a set of experiments to study the
environmental factors (i.e., disk usage,
memory occupation and concurrency) that
affect the reproducibility of Mandelbugs

 High usage of environmental factors increases
significantly the reproducibility of Mandelbugs

 Submitted to ISSRE 2014

Aging-related Bug – Definition

 Aging-related bug := A fault
that leads to the accumulation of
errors either inside the running
application or in its system-
context environment, resulting in
an increased failure rate and/or
degraded performance.

 Example:

 A bug causing memory leaks in the application

 Note that the aging phenomenon requires a delay
between fault activation and failure occurrence.

 Note also that the software appears to age due to such
a bug; there is no physical deterioration

Relationships

 Bohrbug and Mandelbug are complementary
antonyms.

 Aging-related bugs are a subtype of Mandelbugs

Aging - Related Bugs

Bohrbugs

Mandelbugs

Aging

-

Related Bugs

Bohrbugs

Mandelbugs

Important Questions about these Bugs

 What fraction of bugs are Bohrbugs, Mandelbugs and aging-
related bugs
 How do these fractions vary

 over time
 over projects, languages, application types,…

 Need Measurements
 NASA/JPL Project with Allen Nikora & Michael Grottke & Javier

Alonso; results:
 52% Bohrbugs

 35% Mandelbugs (non-aging-related)

 4% Aging-related bugs

 7% Operator related

 2% Unclassified

 Very similar results for Linux, MySQL, Apache AXIS, httpd

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Environmental diversity
A new thinking to deal with software faults and

failures

Copyright © 2014 by K.S. Trivedi

Software Fault Tolerance: New Thinking

Environmental Diversity as opposed to Design
Diversity

Our claim is that this (retry, restart, reboot,
failover to identical software copy) works since
failures due to Mandelbugs are not negligible.
We thus have an affordable software fault
tolerance technique that we call Environmental
Diversity

What is environmental diversity?

 The underlying idea of Environmental diversity

 Retry a previously faulty operation and it most
likely works -- Why?

 because of the environment where the operation
was executed has changed enough to avoid the
fault activation.

 The environment is understood as

 OS resources, other applications running
concurrently and sharing the same resources,
interleaving of operations, concurrency, or
synchronization.

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Methods of Mitigation

Copyright © 2014 by K.S. Trivedi

Mitigation

Bohrbugs: Remove

 Find and fix the bugs during testing

 Failure data collected during testing

 Calibrate a software reliability growth model (SRGM) using failure

data; this model is then used for prediction

 Many SRGMs exist (JM,NHPP,HGRGM, etc.)

 Books by Lyu, Musa, Cai

 Gokhale & Trivedi, A Time/Structure Based Software Reliability Model,

Annals of Software Engineering, 1999

 Measurements  Empirical (statistical) models

 Mitigation

OS Availability Model (IBM BladeCenter)

UP DN DW
lOS

mOS

RP
asp

bOSbOS

(1-bOS)bOS
DT

dOS

Reboot (Failure due to a Mandelbug)

Fix (Failed due to a Bohrbug)

Markov Availability Model for a Single Replication Domain

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 WLM

 Failover

 Node Agent
 Auto process restart

 Manual recovery
 Process restart
 Node reboot
 Repair

2UUO

1D UA UR UB

UC US UTUN

2g

(1-r)rm

rrmqra

ed2

dd1

(1-c)f

cf (1-q)ra

(1-r)rm

rrm

qra

(1-q)ra
dm

bbm

FS

FN2D 1D2D

ed2

(1-e)d2

d1

cf

(1-c)f ed2 (1-e)d2

RE
(1-b)bm

m

bbm

RP
(1-b)bm

m

1D2NMD
d1

cf

(1-c)f

1N

2N

ed2

(1-d)d1

(1-e)d2

(1-d)d1

dd1

(1-e)d2

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Aging Related Bugs: Replicate,

Restart, Reboot, Rejuvenate

Copyright © 2014 by K.S. Trivedi

 Software Aging

Aging phenomenon
Error conditions accumulating over time

Main causes of Software Aging

Memory leak, fragmentation, Unterminated threads, Data corruption,

Round-off errors, Unreleased file-locks, etc

Observed system
OS, Middle-ware, Netscape, Internet Explorer etc

Performance degradation, system failure

Software Aging - Definition

“Software Aging” phenomenon

Long-running software tends to show an
increasing failure rate.

Not related to application program becoming
obsolete due to changing
requirements/maintenance.

Software appears to age; no real deterioration

Software aging examples:

Oct. 2012 - Amazon Web Services Outage Caused By
Memory Leak And Failure In Monitoring Alarm

Sept. 2011 - Google Docs Outage Blamed on Memory Glitch

Feb. 1991 - The Patriot Missile Software Failure

International Space Station (ISS) FC SSC memory leaks problems

 Software Aging – More Examples

 Cisco Catalyst Switch [Matias Jr.]

 File system aging [Smith & Seltzer]

 Gradual service degradation in the AT&T transaction
processing system [Avritzer et al.]

 Error accumulation in Patriot missile system’s software
[Marshall]

 Resources exhaustion in Apache [Li et al., Grottke et al.]

 Physical memory degradation in a SOAP-based Server [Silva
et al.]

 Software aging in Linux [Cotroneo et al.]

 Crash/hang failures in general purpose applications after a
long runtime

Measurements Showing Resource
Exhaustion or Depletion

 Real Memory Free File Table Size

A Methodology for Detection and Estimation of Software Aging,

S. Garg, A. van Moorsel, K. Vaidyanathan and K. Trivedi.

 Proc. of IEEE Intl. Symp. on Software Reliability Engineering, Nov. 1998.

Software Fault Types & Their Mitigation

Software rejuvenation

Software rejuvenation is a cost effective solution for

improving software reliability by avoiding/postponing
unanticipated software failures/crashes.

It allows proactive recovery to be carried either
automatically or at the discretion of the
user/administrator

Rejuvenation of the environment, not of software

Software rejuvenation examples

 Patriot missile system software - switch off and on
every 8 hours

 ISS FS SSC (ISS File system) - switch off and on
every 2 months

 Process and connections restart/recycling

 Tens of US Patents related with this
technology

 Software Rejuvenation
 More Examples

 AT&T billing applications [Huang et al.]

 On-board preventive maintenance for long-life deep space
missions (NASA’s X2000 Advanced Flight Systems Program)
[Tai et al.]

 IBM Director Software Rejuvenation (x-series) [IBM & Duke
Researchers]

For more examples:
 "Software rejuvenation - Do IT & Telco industries use it?". Javier Alonso, Antonio Bovenzi, Jinghui

Li, Yakun Wang, Stefano Russo, and Kishor Trivedi. The 4rd International Workshop on Software Aging and
Rejuvenation (WoSAR 2012) . Held in conjunction with The 23nd annual International Symposium on
Software Reliability Engineering (ISSRE 2012), Dallas, USA, 2012.

 Software Rejuvenation –Trade-off

 Advantages

 Reduces costs of sudden aging-related failures

 Can be applied at the discretion of the
user/administrator

 Disadvantages

 Direct costs of carrying out rejuvenation

 Opportunity costs of rejuvenation (downtime,
decreased performance, lost transactions etc)

 Important research issue:

Find optimal times to perform rejuvenation!

Software rejuvenation

Copyright © 2014 by K.S. Trivedi

Software Rejuvenation Granularities

Copyright © 2014 by K.S. Trivedi

IBM xSeries

Software Rejuvenation Agent (SRA)

IBM Director system management tool
 Provides GUI to configure SRA

 Acts upon alerts

Two versions
 Periodic rejuvenation

 Prediction-based rejuvenation

Summary

It is possible to enhance software availability during

operation exploiting environmental diversity

Multiple types of recovery after a software failure can
be judiciously employed: restart, failover to a replica,
reboot and if all else fails repair (patch)

Summary

Software aging not anecdotal – real life scientific

phenomenon

Rejuvenation implemented in several special purpose

applications and many general purpose cluster
systems

Key References
 Fighting Bugs: Remove, Retry, Replicate and Rejuvenate, M. Grottke and K. Trivedi,

IEEE Computer, Feb. 2007.

 Availability Modeling of SIP Protocol on IBM WebSphere, K. S. Trivedi, D. Wang, D.
J. Hunt, A. Rindos, W. E. Smith, B. Vashaw, Proc. PRDC 2008.

 Using Accelerated Life Tests to Estimate Time to Software Aging Failure, MATIAS
JR, R., TRIVEDI, K., Maciel, P. , ISSRE, 2010.

 Accelerated Degradation Tests Applied to Software Aging Experiments, Rivalino
Matias, Jr., K. S. Trivedi and Paulo J. F. Filho and Pedro A. Barbetta, IEEE Transactions on
Reliability, March 2010.

 An Empirical Investigation of Fault Types in Space Mission System Software,
M.Grottke, A. P. Nikora and K. S. Trivedi, Proc. DSN, 2010.

 Software fault mitigation and availability assurance techniques, K. S. Trivedi, M.
Grottke, and E. Andrade. International Journal of System Assurance Engineering and
Management, 2011.

 Recovery from Failures due to Mandelbugs in IT Systems, K. Trivedi, R.
Mansharamani, D.S. Kim, M. Grottke, M. Nambiar , Proc. PRDC 2011

 O. Kyas. (2001). Network Troubleshooting, Palo Alto California, Agilent Technologies
(book)

 M. Kaaniche and K. Kanoun (1996). Reliability of a Commercial Telecommunications
System, ISSRE 1996

 R. Cramp, M. A. Vouk, and W. Jones (1992). On Operational Availability of a Large
Software-Based Telecommunications System, ISSRE 1992

73

Key References
 Software Rejuvenation: Analysis, Module and Applications, Y. Huang, C.

Kintala, N. Kolettis and N. Fulton, In Proc. FTCS-25, June 1995.

 A Methodology for Detection and Estimation of Software Aging, S. Garg, A.
van Moorsel, K. Vaidyanathan and K. S. Trivedi. Proc. ISSRE 1998.

 Performance and Reliability Evaluation of Passive Replication Schemes in
Application Level Fault Tolerance, S. Garg, Y. Huang, C. M. R. Kintala, K. S.
Trivedi, and S. Yajnik. In Proc. FTCS 1999.

 Statistical Non-Parametric Algorithms to Estimate the Optimal Software
Rejuvenation Schedule, T. Dohi, K. Goseva-Popstojanova and K. S. Trivedi, Proc.
PRDC 2000.

 Proactive Management of Software Aging, V. Castelli, R. E. Harper, P.
Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan and W. Zeggert, IBM
Journal of Research & Development, March 2001.

 A Comprehensive Model for Software Rejuvenation, K. Vaidyanathan and K. S.
Trivedi. IEEE-TDSC, April-June 2005.

 Analysis of software aging in a web server, M. Grottke, L. Li, K. Vaidyanathan
and K. S. Trivedi, IEEE Trans. Reliability, Sept. 2006.

74

 Software dependability in the Tandem GUARDIAN system, Lee I., Iyer, R.K.,
In IEEE Transactions on Software Engineering, vol.21, no.5, pp.455,467, May 1995

 Whither generic recovery from Application Faults? A fault study using
Open-Source Software, Chandra S., Chen P. M., In Proceedings of the 2000
International Conference on Dependable Systems and Networks

Key References

75

