
Software Fault Tolerance
via Environmental Diversity

Kishor Trivedi

Dept. of Electrical & Computer Engineering

Duke High Availability Assurance Lab (DHAAL)

Duke University

Durham, NC 27708

ktrivedi@duke.edu

www.ee.duke.edu/~ktrivedi

SERE
July 2, 2014

Copyright © 2014 by K.S. Trivedi

mailto:ktrivedi@duke.edu
http://www.ee.duke.edu/~kt
http://www.ee.duke.edu/~kt

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Pervasive Dependence on Computer
Systems Need for High Reliability/Availability

Health & Medicine
Avionics

Entertainment
Banking

Communication

Basic Definitions

 Steady-state availability (Ass) or just
availability

 Long-term probability that the system is available
when requested:

 MTTF is the system mean time to failure, a
complex combination of component MTTFs

 MTTR is the system mean time to recovery

 - may consist of many phases

MTTR MTTF

MTTF

+
=

ssA

Basic Definitions

 Downtime in minutes per year

 In industry, (un)availability is usually presented in terms of

annual downtime.

 Downtime = 876060 (1- Ass) minutes.

 5 NINES (Ass = 0.99999) 5.26 minutes annual downtime

Number of Nines– Reality Check

 49% of Fortune 500 companies experience at least
1.6 hours of downtime per week

 Approx. 80 hours/year=4800 minutes/year

 Ass=(8760-80)/8760=0.9908

 That is, between 2 NINES and 3 NINES!

 This study assumes planned and unplanned
downtime, together

 Achieving High Availability is a Challenge

Jan. 2014 , Gmail was down for 25 – 50 min.

Oct. 2013, Unavailable services like post photos and “likes”

Jan. 2013, AWS down for an hour approx.

Feb. 2013, Windows Azure down for 12 hours

More Failures

 Black Sept. 2011, In the same week!!!!:
 Microsoft Cloud service outage (2.5 hours)

 Google Docs service outage (1 hour)
 A memory leak due to a software update

 Sept. 2012 GoDaddy (4 hours)
 5 millions of websites affected

 Oct. 2012 Amazon
 10/15/2012 Webservices – 6 hours (Memory leak)

 10/27/2012 EC2 – > 2 hours

 Downtown Costs per Hour
 Brokerage operations $6,450,000

 Credit card authorization $2,600,000

 eBay (1 outage 22 hours) $225,000

 Amazon.com $180,000

 Package shipping services $150,000

 Home shopping channel $113,000

 Catalog sales center $90,000

 Airline reservation center $89,000

 Cellular service activation $41,000

 On-line network fees $25,000

 ATM service fees $14,000

Sources: InternetWeek 4/3/2000; Fibre Channel: A Comprehensive Introduction, R. Kembel
2000, p.8. ”...based on a survey done by Contingency Planning Research."

High Reliability/Availability:
 Software is the problem

 Hardware fault tolerance, fault management,
reliability/availability modeling relatively well
developed

 System outages more due to software faults

Key Challenge:

 Software reliability is one of the
 weakest links in system
 reliability/availability

Software is the problem

1985

2005

Across different industries….

Jim Gray’s paper titled “Why
do computers stop and what can
be done about it?” pointed out
this trend in 1985, followed by
his paper
“A census of tandem system
availability between 1985 and
1990”

Increasing SW Failure Rate?
Planetary Missions Flight Software: A. Nikora of JPL

Mission Name (in launch order)

 Mars Pathfinder CASSINI Mars Mars Stardust Mars Genesis Mars Deep Mars

 Global Climate Polar Odyssey Exploration Impact Reconnaissance

 Surveyor Orbiter Lander Rover Orbiter

The interval
between the
first and last
launch:
8.76 years.

The interval
between successive
launches ranges
from:
23 to 790 days.

Increasing SW Failure Rate?
Planetary Missions Ground Support Software: A. Nikora of JPL

Mission Name (in launch order)

 Mars Pathfinder CASSINI Mars Mars Stardust Mars Genesis Mars Deep Mars

 Global Climate Polar Odyssey Exploration Impact Reconnaissance

 Surveyor Orbiter Lander Rover Orbiter

The interval
between the
first and last
launch: 8.76
years.

The interval
between
successive
launches ranges
from:
23 to 790 days.

Software Reliability: Known Means

 Fault prevention or Fault avoidance

 Fault Removal

 Fault Tolerance

Copyright © 2013 by K.S. Trivedi

Software Reliability

 Fault prevention or Fault avoidance

 Good software engineering practices
 Requirement Elicitation (Abuse Case Analysis – TCS SSA)
 Design Analysis / Review
 Secure Programming Standard & Review
 Secure Programming Compilation
 Software Development lifecycle
 Automated Code Generation Tools (IDE like Eclipse)

 Use of formal methods
 UML, SysML, BPM
 Proof of correctness
 Model Checking (SMART, SPIN)

 Bug free code not yet possible for large scale software systems

 Yet there is a strong need for failure-free system operation

Software Reliability

 Fault prevention or Fault avoidance

 Fault Removal

 Fault Tolerance

Copyright © 2013 by K.S. Trivedi

Software Reliability

 Fault removal
 Can be carried out during

 the specification and design phase

 the development phase

 the operational phase

 Failure data may be collected and used to parameterize a software
reliability growth model to predict when to stop testing

 Software is still delivered with Many bugs either because of
inadequate budget for testing , very difficult to
detect/localize/correct bugs or inadequacy of techniques
employed/known

Software Reliability

 Fault prevention or Fault avoidance

 Fault Removal

 Fault Tolerance

Copyright © 2013 by K.S. Trivedi

Software Reliability

 There are stringent requirements for failure-free
operation of software-based systems – next idea

Software fault tolerance is a potential

solution to improve software reliability in lieu of
virtually impossible fault-free software

Copyright © 2014 by K.S. Trivedi

Software Fault Tolerance
 Classical Techniques

Design diversity
 N-version programming

 Recovery block

 N-self check programming

Expensive (unless based on component-based
design) not used much in practice!

Yet there are stringent requirements for failure-free
operation

Challenge: Affordable Software Fault Tolerance

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

High availability SIP Application Server
Configuration on IBM WebSphere

Blade 4

IP Sprayer-IBM Load

Balancer

-

SIP

IBM PC

Replication

Group 3

Blade 2

Blade 3

Blade 4

Blade 2

AS 1

AS 2

AS 3

AS 4

AS 5

AS 1

AS 4

AS 2

AS 5

AS 6

AS 3

AS 6

Blade 3

Replication Domain 1

Replication Domain 2

Replication Domain 3

SIP

Proxy 1

SIP

Proxy 1

Blade 1

Blade 1

Replication Domain 4

Replication Domain 5

Replication Domain 6

Blade Chassis 1

Blade Chassis 2

Blade 4

Test Driver

Test Driver

Test drivers

DM

AS1 thru AS6 are

Application Server

Proxy1's are Stateless

Proxy Server

PRDC 2008 and
ISSRE 2010
papers

Hardware configuration:
 Two BladeCenter chassis; 4 blades (nodes) on each chassis (1

chassis sufficient for performance)

Software configuration:

 2 copies of SIP/Proxy servers (1 sufficient for performance)

 12 copies of WAS (6 sufficient for performance)

 Each WAS instance forms a redundancy pair (replication

domain) with WAS installed on another node on a different
chassis

 The system has hardware redundancy and software

redundancy

High availability SIP Application
Server configuration on WebSphere

Software Fault Tolerance
 Identical copies of SIP proxy used as backups (hot

spares)

 Identical copies of WebSphere Applications Server (WAS)
used as backups (hot spares)

 Type of software redundancy – (not design diversity)
but replication of identical software copies

 Normal recovery after a software failure

 restart software, reboot node or fail-over to a software replica;
only when all else fails, a “software repair” is invoked

High availability SIP Application
Server configuration on WebSphere

Escalated levels of Recovery (Telco)

The flowchart briefly
depicts the actions
taken for recovery after
a failure is detected. Try
the simplest recovery
method first, then a
more complex etc.

Software Fault Tolerance: New Thinking

Retry, restart, reboot!

 Known to help in dealing with hardware
transients

 Do they help in dealing with failures caused
by software bugs?

 If yes, why?

Software Fault Tolerance: New Thinking

Failover to an identical software replica (that is
not a diverse version)

 Does it help?

 If yes, why?

Twenty years ago this would be considered crazy!

Outline

 Motivation

 A Real System

 Software Fault Classification

 Fighting Bugs: Remove, Retry, Replicate and
Rejuvenate, M. Grottke and K. Trivedi, IEEE Computer
Magazine, Feb. 2007

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Software Faults
main threats to high reliability,

availability & safety

Copyright © 2014 by K.S. Trivedi

IFIP Working Group 10.4 (Laprie)

Failure occurs when the delivered service no longer complies with the
desired output.

Error is that part of the system state which is liable to lead to subsequent
failure.

Fault is adjudged or hypothesized cause of an error.

Faults are the cause of errors that may lead to failures

Fault Error Failure

Need to Classify bug types

 We submit that a software fault tolerance
approach based on retry, restart, reboot or
fail-over to an identical software replica
(not a diverse version) works because of a
significant number of software failures are
caused by Mandelbugs as opposed to the
traditional software bugs now called
Bohrbugs

Example: A bug causing a failure

A Classification of Software Faults

 Bohrbug := A fault that is easily
isolated and that manifests
consistently under a well-defined
set of conditions, because its
activation and error propagation
lack complexity.

 whenever the user enters a negative

 date of birth

 Since they are easily found, Bohrbugs may be detected
and fixed during the software testing phase.

 The term alludes to the physicist Niels Bohr and his
rather simple atomic model.

Mandelbug – Definition

 Mandelbug := A fault whose
activation and/or error
propagation are complex.
Typically, a Mandelbug is
difficult to isolate, and/or the
failures caused by a it are not
systematically reproducible.

 Example: A bug whose

 activation is scheduling-dependent

 The residual faults in a thoroughly-tested piece of
software are mainly Mandelbugs.

 The term alludes to the mathematician Benoît
Mandelbrot and his research in fractal geometry.

 Sometimes called concurrency or non-deterministic
bugs

Mandelbugs complexity factors
 A fault is a Mandelbug if its manifestation is

subject to the following complexity factors
 Long time lag between fault activation and failure

appearance
 Operating environment (OS, other applications

running concurrently, hardware, network…)
 Timing among submitted operations
 Sequencing or Ordering of operations

 A failure due to a Mandelbug may not show up
upon the resubmission of a workload if the
operating environment has changed enough

Examples of Types of Bugs in IT Systems

 Mandelbugs in IT Systems: Trivedi, Mansharamani,
Kim, Grottke, and Nambiar. “Recovery from failures
due to Mandelbugs in IT systems”. PRDC 2011.

 The selected TCS projects ranged across a number of
business systems in the banking, financial,
government, IT, pharmacy, and telecom sector.

Mandelbug reproducibility

 Mandelbugs are really hard to reproduce

 Conducted a set of experiments to study the
environmental factors (i.e., disk usage,
memory occupation and concurrency) that
affect the reproducibility of Mandelbugs

 High usage of environmental factors increases
significantly the reproducibility of Mandelbugs

 Submitted to ISSRE 2014

Aging-related Bug – Definition

 Aging-related bug := A fault
that leads to the accumulation of
errors either inside the running
application or in its system-
context environment, resulting in
an increased failure rate and/or
degraded performance.

 Example:

 A bug causing memory leaks in the application

 Note that the aging phenomenon requires a delay
between fault activation and failure occurrence.

 Note also that the software appears to age due to such
a bug; there is no physical deterioration

Relationships

 Bohrbug and Mandelbug are complementary
antonyms.

 Aging-related bugs are a subtype of Mandelbugs

Aging - Related Bugs

Bohrbugs

Mandelbugs

Aging

-

Related Bugs

Bohrbugs

Mandelbugs

Important Questions about these Bugs

 What fraction of bugs are Bohrbugs, Mandelbugs and aging-
related bugs
 How do these fractions vary

 over time
 over projects, languages, application types,…

 Need Measurements
 NASA/JPL Project with Allen Nikora & Michael Grottke & Javier

Alonso; results:
 52% Bohrbugs

 35% Mandelbugs (non-aging-related)

 4% Aging-related bugs

 7% Operator related

 2% Unclassified

 Very similar results for Linux, MySQL, Apache AXIS, httpd

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Environmental diversity
A new thinking to deal with software faults and

failures

Copyright © 2014 by K.S. Trivedi

Software Fault Tolerance: New Thinking

Environmental Diversity as opposed to Design
Diversity

Our claim is that this (retry, restart, reboot,
failover to identical software copy) works since
failures due to Mandelbugs are not negligible.
We thus have an affordable software fault
tolerance technique that we call Environmental
Diversity

What is environmental diversity?

 The underlying idea of Environmental diversity

 Retry a previously faulty operation and it most
likely works -- Why?

 because of the environment where the operation
was executed has changed enough to avoid the
fault activation.

 The environment is understood as

 OS resources, other applications running
concurrently and sharing the same resources,
interleaving of operations, concurrency, or
synchronization.

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Methods of Mitigation

Copyright © 2014 by K.S. Trivedi

Mitigation

Bohrbugs: Remove

 Find and fix the bugs during testing

 Failure data collected during testing

 Calibrate a software reliability growth model (SRGM) using failure

data; this model is then used for prediction

 Many SRGMs exist (JM,NHPP,HGRGM, etc.)

 Books by Lyu, Musa, Cai

 Gokhale & Trivedi, A Time/Structure Based Software Reliability Model,

Annals of Software Engineering, 1999

 Measurements Empirical (statistical) models

 Mitigation

OS Availability Model (IBM BladeCenter)

UP DN DW
lOS

mOS

RP
asp

bOSbOS

(1-bOS)bOS
DT

dOS

Reboot (Failure due to a Mandelbug)

Fix (Failed due to a Bohrbug)

Markov Availability Model for a Single Replication Domain

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 WLM

 Failover

 Node Agent
 Auto process restart

 Manual recovery
 Process restart
 Node reboot
 Repair

2UUO

1D UA UR UB

UC US UTUN

2g

(1-r)rm

rrmqra

ed2

dd1

(1-c)f

cf (1-q)ra

(1-r)rm

rrm

qra

(1-q)ra
dm

bbm

FS

FN2D 1D2D

ed2

(1-e)d2

d1

cf

(1-c)f ed2 (1-e)d2

RE
(1-b)bm

m

bbm

RP
(1-b)bm

m

1D2NMD
d1

cf

(1-c)f

1N

2N

ed2

(1-d)d1

(1-e)d2

(1-d)d1

dd1

(1-e)d2

Outline

 Motivation

 A Real System

 Software Fault Classification

 Environmental Diversity

 Methods of Mitigation

 Software Aging and Rejuvenation

 Conclusions

Aging Related Bugs: Replicate,

Restart, Reboot, Rejuvenate

Copyright © 2014 by K.S. Trivedi

 Software Aging

Aging phenomenon
Error conditions accumulating over time

Main causes of Software Aging

Memory leak, fragmentation, Unterminated threads, Data corruption,

Round-off errors, Unreleased file-locks, etc

Observed system
OS, Middle-ware, Netscape, Internet Explorer etc

Performance degradation, system failure

Software Aging - Definition

“Software Aging” phenomenon

Long-running software tends to show an
increasing failure rate.

Not related to application program becoming
obsolete due to changing
requirements/maintenance.

Software appears to age; no real deterioration

Software aging examples:

Oct. 2012 - Amazon Web Services Outage Caused By
Memory Leak And Failure In Monitoring Alarm

Sept. 2011 - Google Docs Outage Blamed on Memory Glitch

Feb. 1991 - The Patriot Missile Software Failure

International Space Station (ISS) FC SSC memory leaks problems

 Software Aging – More Examples

 Cisco Catalyst Switch [Matias Jr.]

 File system aging [Smith & Seltzer]

 Gradual service degradation in the AT&T transaction
processing system [Avritzer et al.]

 Error accumulation in Patriot missile system’s software
[Marshall]

 Resources exhaustion in Apache [Li et al., Grottke et al.]

 Physical memory degradation in a SOAP-based Server [Silva
et al.]

 Software aging in Linux [Cotroneo et al.]

 Crash/hang failures in general purpose applications after a
long runtime

Measurements Showing Resource
Exhaustion or Depletion

 Real Memory Free File Table Size

A Methodology for Detection and Estimation of Software Aging,

S. Garg, A. van Moorsel, K. Vaidyanathan and K. Trivedi.

 Proc. of IEEE Intl. Symp. on Software Reliability Engineering, Nov. 1998.

Software Fault Types & Their Mitigation

Software rejuvenation

Software rejuvenation is a cost effective solution for

improving software reliability by avoiding/postponing
unanticipated software failures/crashes.

It allows proactive recovery to be carried either
automatically or at the discretion of the
user/administrator

Rejuvenation of the environment, not of software

Software rejuvenation examples

 Patriot missile system software - switch off and on
every 8 hours

 ISS FS SSC (ISS File system) - switch off and on
every 2 months

 Process and connections restart/recycling

 Tens of US Patents related with this
technology

 Software Rejuvenation
 More Examples

 AT&T billing applications [Huang et al.]

 On-board preventive maintenance for long-life deep space
missions (NASA’s X2000 Advanced Flight Systems Program)
[Tai et al.]

 IBM Director Software Rejuvenation (x-series) [IBM & Duke
Researchers]

For more examples:
 "Software rejuvenation - Do IT & Telco industries use it?". Javier Alonso, Antonio Bovenzi, Jinghui

Li, Yakun Wang, Stefano Russo, and Kishor Trivedi. The 4rd International Workshop on Software Aging and
Rejuvenation (WoSAR 2012) . Held in conjunction with The 23nd annual International Symposium on
Software Reliability Engineering (ISSRE 2012), Dallas, USA, 2012.

 Software Rejuvenation –Trade-off

 Advantages

 Reduces costs of sudden aging-related failures

 Can be applied at the discretion of the
user/administrator

 Disadvantages

 Direct costs of carrying out rejuvenation

 Opportunity costs of rejuvenation (downtime,
decreased performance, lost transactions etc)

 Important research issue:

Find optimal times to perform rejuvenation!

Software rejuvenation

Copyright © 2014 by K.S. Trivedi

Software Rejuvenation Granularities

Copyright © 2014 by K.S. Trivedi

IBM xSeries

Software Rejuvenation Agent (SRA)

IBM Director system management tool
 Provides GUI to configure SRA

 Acts upon alerts

Two versions
 Periodic rejuvenation

 Prediction-based rejuvenation

Summary

It is possible to enhance software availability during

operation exploiting environmental diversity

Multiple types of recovery after a software failure can
be judiciously employed: restart, failover to a replica,
reboot and if all else fails repair (patch)

Summary

Software aging not anecdotal – real life scientific

phenomenon

Rejuvenation implemented in several special purpose

applications and many general purpose cluster
systems

Key References
 Fighting Bugs: Remove, Retry, Replicate and Rejuvenate, M. Grottke and K. Trivedi,

IEEE Computer, Feb. 2007.

 Availability Modeling of SIP Protocol on IBM WebSphere, K. S. Trivedi, D. Wang, D.
J. Hunt, A. Rindos, W. E. Smith, B. Vashaw, Proc. PRDC 2008.

 Using Accelerated Life Tests to Estimate Time to Software Aging Failure, MATIAS
JR, R., TRIVEDI, K., Maciel, P. , ISSRE, 2010.

 Accelerated Degradation Tests Applied to Software Aging Experiments, Rivalino
Matias, Jr., K. S. Trivedi and Paulo J. F. Filho and Pedro A. Barbetta, IEEE Transactions on
Reliability, March 2010.

 An Empirical Investigation of Fault Types in Space Mission System Software,
M.Grottke, A. P. Nikora and K. S. Trivedi, Proc. DSN, 2010.

 Software fault mitigation and availability assurance techniques, K. S. Trivedi, M.
Grottke, and E. Andrade. International Journal of System Assurance Engineering and
Management, 2011.

 Recovery from Failures due to Mandelbugs in IT Systems, K. Trivedi, R.
Mansharamani, D.S. Kim, M. Grottke, M. Nambiar , Proc. PRDC 2011

 O. Kyas. (2001). Network Troubleshooting, Palo Alto California, Agilent Technologies
(book)

 M. Kaaniche and K. Kanoun (1996). Reliability of a Commercial Telecommunications
System, ISSRE 1996

 R. Cramp, M. A. Vouk, and W. Jones (1992). On Operational Availability of a Large
Software-Based Telecommunications System, ISSRE 1992

73

Key References
 Software Rejuvenation: Analysis, Module and Applications, Y. Huang, C.

Kintala, N. Kolettis and N. Fulton, In Proc. FTCS-25, June 1995.

 A Methodology for Detection and Estimation of Software Aging, S. Garg, A.
van Moorsel, K. Vaidyanathan and K. S. Trivedi. Proc. ISSRE 1998.

 Performance and Reliability Evaluation of Passive Replication Schemes in
Application Level Fault Tolerance, S. Garg, Y. Huang, C. M. R. Kintala, K. S.
Trivedi, and S. Yajnik. In Proc. FTCS 1999.

 Statistical Non-Parametric Algorithms to Estimate the Optimal Software
Rejuvenation Schedule, T. Dohi, K. Goseva-Popstojanova and K. S. Trivedi, Proc.
PRDC 2000.

 Proactive Management of Software Aging, V. Castelli, R. E. Harper, P.
Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan and W. Zeggert, IBM
Journal of Research & Development, March 2001.

 A Comprehensive Model for Software Rejuvenation, K. Vaidyanathan and K. S.
Trivedi. IEEE-TDSC, April-June 2005.

 Analysis of software aging in a web server, M. Grottke, L. Li, K. Vaidyanathan
and K. S. Trivedi, IEEE Trans. Reliability, Sept. 2006.

74

 Software dependability in the Tandem GUARDIAN system, Lee I., Iyer, R.K.,
In IEEE Transactions on Software Engineering, vol.21, no.5, pp.455,467, May 1995

 Whither generic recovery from Application Faults? A fault study using
Open-Source Software, Chandra S., Chen P. M., In Proceedings of the 2000
International Conference on Dependable Systems and Networks

Key References

75

