
Constraint-Based

Reasoning in Static

Analysis and Testing

Jian Zhang(张健)

Chinese Academy of Sciences
July 1, 2014

Test Data Generation & Static Analysis

Based on

Symbolic Execution & Constraint Solving

Testing & Static Analysis

Testing:

 Test data/case generation/preparation ***

 Test case execution

 Test result analysis / fault localization …

Static Analysis (of source code) ***

Path-oriented/sensitive Analysis

* program path path condition (PC)

 ↑

 symbolic execution

 (or backward substitution)

* The path is feasible (or executable) iff

 the PC is satisfiable.

 Constraint Solving

Symbolic Execution

 giving symbolic values as input to the program,

and simulating the program’s behaviour

 [Boyer et al. 1975] [King 1976] [Clarke 1976]

 Many research groups working on this technique ...

 Path feasibility analysis and constraint solving

 [Zhang 2000] [Zhang-Wang 2001]

 Constraint Solving and Symbolic Execution

[Zhang VSTTE2005]

A path in bubble-sort

 i = n-1;

 @ i > 0;

 indx = 0;

 j = 0;

 @ j < i;

 @ a[j+1] < a[j];

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 indx = j; j = j+1;

 @ j >= i;

 i = indx;

 @ i <= 0;

 Path condition:

 n-1 > 0

 a[1] < a[0]

 n-1 <= 1

Input data: n = 2

 a[]: { 3, 2 } or { 8, 1} or …

Checking areas (rather than points) in the input space.

Symbolic Execution

Test Generation and Bug Finding via Symbolic Execution

 Finding one point in any area

Satisfiability Checking (SAT solving)

 Example Input:

 p cnf 3 3

 1 2 3 0

 -1 -2 0

 -2 -3 0

 denoting the following formula:

 (p1 OR p2 OR p3) AND

 (NOT p1 OR NOT p2) AND

 (NOT p2 OR NOT p3)

 p1

 p2

Binary search tree

F T

Satisfiability Modulo Theories (SMT)

solvers – CVC3/CVC4, Yices, Z3, …

 x3, x2, x1, x0: INT;

 CHECKSAT (x0 >= 0 AND x0 <= 9 AND

x1 >= 0 AND x1 <= 9 AND x2 >= 0 AND

x2 <= 9 AND x3 >= 0 AND x3 <= 9 AND

(x0 > 0 OR x1 > 0 OR x2 > 0 OR x3 > 0)

AND 1000*x0 + 100*x3 + 10*x2 + x1 =

2000*x3 + 200*x2 + 20*x1 + 2*x0);

Constraint Solver: BoNuS (1999-2001)
[Zhang 2000] [ZhangWang 2001]

 Example.
 enum { Male, Female } gender;

 int age;

 bool b = (age > 18);

 bool married;

 {

 and(not(b), married);

 }

Search proc. (simple SMT solving)

p

q !q

p: (x>3)

q: (2*x > 5)

Check the feasibility of:

 x>3; 2*x <= 5

Linear programming:

 lp_solve

Constraint Solving + Symbolic Execution

[Zhang VSTTE 2005 (LNCS 4171)]

 verify – or find bugs in – certain programs

 check the error messages produced by other

static analyzers, to eliminate some false alarms

 automate an important part of unit testing, i.e.,

generating test cases (input data) for the

program

 generate test cases for black-box testing or

model-based testing, if a proper specification

(like EFSM) is provided.

Unit Testing – Stmt/branch coverage

Examples: GNU coreutils [XZ 2006]

 remove_suffix() in basename.c

 cat() in cat.c

 cut_bytes() in cut.c

 parse_line() in dircolors.c

 set_prefix() in fmt.c

 attach() in ls.c

 bsd_split_3() and hex_digit() in md5sum.c

Example. GNU make: dir.c
char *dosify(char filename[20]) {

 …

 for (i = 0; *filename != '\0' && i < 8 &&…; i++) {

 *df = *filename; df++; filename++;

 }

 if (*filename != '\0') {

 *df = *filename; df++; filename++;

 for (i = 0; *filename != '\0' && i < 3 &&…; i++) {

 *df = *filename; df++; filename++;

 }

}

Test suite: 3 test cases 100% branch coverage

Static Analysis of C programs

 inter-procedural, path sensitive tools for

finding memory leak

[Xu-Zhang, 2008] on top of LLVM

[Xu-Zhang-Xu, 2011] melton, on top of

Clang static analyzer

 Canalyze -- a tool for finding various

kinds of bugs (e.g., NULL pointer

dereferencing; undefined return value; …)

Bugs Found in Open Source Software

Software KLoC Undef.

value

NULL

ptr

Mem.

leak

Use after

free

libosip2-4.0.0 28.9 √ √ √

libosip2-3.6.0 29.0 √

lighttpd-1.4.32 46.3 √ √ √

Openssh-5.9p1 89.8 √

wget-1.13 91.8 √ √

sqlite-3.7.11 139.2 √

Coreutils-8.15 202.3 √

Coreutils-8.17 211.9 √

sed-4.2 30.4 √

glibc-2.15 1020.5 √

Error in Openssh-5.9p1

 //in file sshconnect2.c

authmethod_get(...) {

 ...

 for(; ;) {

 if ((name = match_list(…)) == NULL){//Allocate heap space to name

 }

 …

 if (…) {

 …

 xfree(name);

 return …;

 }

 }//end for

 if (name) xfree(name);

}

Ex. bug report -- bftpd

 From: "Jesse Smith" <jessefrgsmith@yahoo.ca>

Date: 2013-5-28

Subject: Re: Some potential bugs in bftpd-3.8

To: "Zhenbo Xu" <zhenbo1987@gmail.com>

I had a chance to examine your bug reports for Bftpd.

All of the problems you reported are correct. The

memory handling for bftpd_cwd_mappath() was an

especially bad bug.

All of these bugs have been fixed in my copy of the

code and I will be releasing a new version of Bftpd

soon …

Finding Bugs Related to

Floating-point numbers

• Divide by zero

• One operand much larger than the other

• …

To detect such problems, we may need to
solve constraints like:

((11 * a2 * b2 - b6 - 121 * b4)*16777216) < 3

Finding witnesses for data race bugs

Data race – severe concurrency bug

• [Said et al. 2011]

• …

• [Huang-Meredith-Rosu 2014]

We need to solve constraints like:

 X10-X3 = 1; X5<X7 or X9<X2; …

Detecting Resource Leak in Android Apps

Resources:

• exclusive (e.g., Camera)

• memory consuming (e.g., MediaPlayer)

• energy consuming (e.g., SensorManager)

Resource request and release operations

Tool: Relda [Guo et al. 2013]

Benchmarks: Baidu, Taobao, Tencent, …

Example.

 private void initCamera() throws IOException

 { if(!bIfPreview)

 { //If the camera is not in preview mode, turn it on.

 mCamera = Camera.open(); }

 if (mCamera != null && !bIfPreview)

 { mCamera.startPreview(); bIfPreview = true; }

 }

 private void resetCamera()

 { if (mCamera != null && bIfPreview)

 { mCamera.stopPreview();

 mCamera.release();

 }

 }

Technology Transfer

 need from industry

 power of the tool

 Commercialization … ??

Combinatorial Testing

 Black-box testing technique

 The system-under-test (SUT) has a set

of parameters/components, each of

which can take some values.

 Example:

Browser: IE, Chrome, Firefox, ...

Operating system: Linux, Windows XP, ...

Manufacturer: Dell, Lenovo, HP, ...

Constraints in CT

 Example of constraints:

 not ((Browser==IE) && (OS==Linux))

 [Arcuri and Briand 2012] "in the presence of

constraints, random testing can be worse

than combinatorial testing"

Constraints used everywhere

 static program analysis (bug finding)

 combinatorial testing

 [DeMillo-Offutt ~1990], …

 KLEE, SAGE, …

 Workshop on the Constraints in

Software Testing, Verification and

Analysis (CSTVA)

All kinds of Constraints

 Linear inequalities: x+2y < 3

 Integer difference constraints: x-y < 2

 Non-linear constraints: 2xy+z = 8

 Propositional formulas: (p || ~q) && r

 SMT formulas: (x-y>5) || (x+2y<16)

 …

Extensions to SMT Solving

Extension to SMT solving (I)

 Finding 1 solution Finding the best solution

Logic +

arithmetic

Linear

Inequalities

SMT-opt

LP, …

SMT

Linear

programming

Optimization w.r.t. complex

constraints

 Linear Programming

 min. f(X)

 s.t. Ax <= b

 SMT optimization

 min. f(X)

 s.t. constraints in SMT

form

A Simple Example

min. x - y

subject to:

(((y + 3x < 3) (30 < y)) ∨ (x <= 60))

∧ ((30 < y) ┐(x > 3) ∧ (x <= 60))

Stress Testing – test data gen.

 Extract paths from some model (e.g., activity

diagram).

 From the path, obtain resource consumption

information.

 Generate constraint solving/optimization

problems.

 Solve them !

[Zhang-Cheung 2002]

min:-100 (x00-x01) -1200 (x10-x11) -1800 (x20-

x21) -56 (x30-x31) -1500 (x40-x41) -150 (x50-x51)

-1440 (x60-x61) -25 (x70-x71) -200 (x80-x81) -230

(x90-x91)

u1 = 1; r1 = 1; v0 <= 25; s0 <= 25; u0 = v1; r0 = s1;

u1 <= u0; x01 = u1 or x11 = u1 or x21 = u1; x00

<= u0; x10 <= u0; x20 <= u0; x01 = x21; x10 = x20;

x00 - x01 <= 5; x10 - x11 <= 6; x20 - x21 <= 15; v1

<= v0; x31 = v1 or x41 = v1; …

Extension to SMT solving (II)

 solution? #of solutions

Logic+

arithmetic

prop.

Logic

Vol.comput.

SAT

SMT

model

counting

Compute volume / solution density

 Given an SMT formula (a set of

constraints), compute the volume of its

solution space (or its solution density).

 Example. Φ :=

 (((y+3x<1) →(30<y)) ∨(x ≤60)) ∧((30<y) →

﹁(x>3) ∧(x ≤60))

 High complexity: #p-hard even for a single

convex polyhedron

Solution counting [MaLiuZhang 2009]

p

q !q

p: (x>3)

q: (2*x > 5)

Check the #of solutions of:

 x>3; 2*x <= 5

Vol. computing for polytopes:

 vinci

Estimate the volume of polytopes

 Simple Monte-Carlo algorithm

 [Liu-Zhang-Zhu 2007]

 PolyVest [Ge-Ma-Zhang 2013]

A Testing Problem as a By-product

 How do we know the “reliability” of the method?

 How do we know the accuracy of the results?

Testing PolyVest
Relation r1:

Results:

Dimension Vol(V) Vol(V1) Vol(V2) Vol(V1+V2) Deviation

5 814.03 573.792 254.765 828.557 +1.78%

8 829.167 323.116 435.406 758.522 -8.52%

14 16961.6 8594.56 8302.33 16896.89 -0.38%

20 1.101e+12 2.412e+11 8.332e+11 1.074e+12 -2..45%

 V= V1+V2

’
’

V
(V,V)

V
Deviation

V

Testing PolyVest
Relation r2:

Results:

V1: Ax <= b

V2: Ax <= nb

Dimension of x is m

Dimension Vol(V1) n n^m expected Vol(V2) Deviation

5 848.758 5 3125 2.652e+06 2.620e+06 -1.21%

8 815.157 3 6561 5.348e+06 5.259e+06 -1.66%

14 15631.2 3 4.782e+06 7.485e+010 7.585e+10 +1.34%

20 1.048e+12 2 1.049e+06 1.099e+18 1.135e+18 +3.28%

’
’

V
(V,V)

V
Deviation

V

Constraint Solving and Symbolic

Execution [Zhang VSTTE2005]

 Verification

 Static analysis

 Testing

“We can also perform other kinds of analysis

which are not so related to the correctness of

programs.” (page 544)

Branch/Path Execution Frequency

Computation

Checking areas (rather than points) in the input space.

What are the sizes of the areas? How much is covered?

Symbolic Execution

Branch selection--

Example

int x;

@ ((x <= 100) && (x > 20))

{

 x = x - 10;

 if (x > 30)

 ... //TRUE branch

 else

 ... //FALSE branch

}

 TRUE branch

 75% (3/4)

 FALSE branch

 25% (1/4)

Constraints:

 (a <=100)&&(a > 20)

 (a-10 > 30)

 (a <=100)&&(a > 20)

 (a-10 <= 30)

int x;

@ ((x <= 50) && (x > 20))

{

 x = x - 10;

 if (x > 30)

 ... //TRUE branch

 else

 ... //FALSE branch

}

 TRUE branch: 1/3

 FALSE branch: 2/3

Constraints:

 (a <= 50)&&(a > 20)

 (a-10 > 30)

 (a <= 50)&&(a > 20)

 (a-10 <= 30)

Path execution frequency -- Example.

int getop(s,lim)

 char s[]; int lim;

{

 int i, c;

 while ((c=getchar()) == ' ' || c == '\t' || c == '\n') ;

 if (c != '.' && (c < '0' || c > '9')) return(c);

 s[0] = c;

 for(i = 1; (c=getchar()) >= '0' && c <= '9'; i++)

 if (i < lim) s[i] = c;

 if (c == '.') { if (i < lim) return(c); … }

}

 Path 1

 1 → 2 → 4 → 5 → 27.

 XP(Path1) ≈ 0.945

 Path 2

 1 → 2 → 4 → 7 → 11 →

19 → 20 → 27.

 XP(Path2) ≈ 0.021

Performance Estimation Based on

Symbolic Execution & Volume Computing

Estimating A Program’s Performance

 δ(P) -- the number of solutions of the path

condition (path exec. frequency).

 Symbolic benchmarking

• Generate some paths;

• Calculate the performance of each path -- PIND(Pi)

• Estimate Performance of the program:

 PIND(P1)* δ(P1) + PIND(P2)* δ(P2) + …

Example. Bubble sort

for(i = 0; i < N-1; i++)

 for(j = N-1; j > i; j--) {

 if (a[j-1] > a[j])

 swap(a[j-1], a[j]);

 }

Analysis of bubble sort

N=4: 24 paths. (δ: ~ the same for each path)

 For each path, the number of

comparisons is the same (6).

 But the number of swaps is different,

ranging from 0 to 6. The total number of

swaps for all the 24 paths is 72.

 On average (when N=4), it needs 3

swaps of array elements and 6

comparisons between array elements.

Example. FIND [Hoare 1971]

Input: array A; size N; int f;

Output:

 A[0], A[1], ..., A[f-1]

 <= A[f]

 <= A[f+1], ..., A[N-1].

benchmarking -- I

 Randomly choose some paths

 (N=8, f=3)

Path nComp nSwap Delta(P)

w11 9 3 16303680

w16 9 2 12191040

w18 9 3 16303680

w20 9 2 12191040

benchmarking -- II

Randomly generate some input data

 { -2, 5, 6, 3, 1, 0, -7, 6 };

 { 2, 0, -2, -8, 4, -4, 5, 1 };

 Average #of swaps: 4.04

 (4075920*4 + 87516*6) / (4075920+87516) ≈ 4.04

Path nSwap Delta(P)

R1 4 4075920

R6 6 87516

Symbolic Benchmarking

Symb. execution symb. benchmarking

• one symb. exec. == many conc. exec.

Given the program

 generate paths from the flow graph; or

 run the program a number of times

 calculate the PIND and Delta values

 get the estimated performance of the prog.

 (weighted sum of the PINDs)

Reliability of

Component-Based Software Systems

Reliability of Component-based Syst.

 reliability of components reliability of
systems ?

• execution frequency calculation

• …

Existing Works:

[Hamlet-Mason-Woit 2001] Theory of software
reliability based on components

System design – control structures:
sequences, conditionals, loops, …

("A supporting tool would …")

Existing Works:

[Palviainen, Evesti, Ovaska 2011] The reliability
estimation, prediction and measuring of
component-based software

Model-based reliability prediction/measuring

State transition matrix – each element of the
matrix Psa denotes the probability of moving
from state s to state a.

A tool chain …

Summary

 All kinds of constraints

Linear/non-linear inequalities

SAT ---- (p or not q) and (not p or q)

SMT ---- (x+y >= 3) and good and (x-y != 8)

Decision problem counting, optimization

 Testing, analysis, reliability, security …

Acknowledgement
• Jun Yan

• Feifei Ma

• Zhongxing Xu

• Zhenbo Xu

• Zhiqiang Zhang

• Tianyong Wu

• Xingming Wu

• Cunjing Ge

• Chaorong Guo

• Yanli Zhang

THANK YOU !

