
Constraint-Based

Reasoning in Static

Analysis and Testing

Jian Zhang(张健)

Chinese Academy of Sciences
July 1, 2014

Test Data Generation & Static Analysis

Based on

Symbolic Execution & Constraint Solving

Testing & Static Analysis

Testing:

 Test data/case generation/preparation ***

 Test case execution

 Test result analysis / fault localization …

Static Analysis (of source code) ***

Path-oriented/sensitive Analysis

* program path  path condition (PC)

 ↑

 symbolic execution

 (or backward substitution)

* The path is feasible (or executable) iff

 the PC is satisfiable.

 Constraint Solving

Symbolic Execution

 giving symbolic values as input to the program,

and simulating the program’s behaviour

 [Boyer et al. 1975] [King 1976] [Clarke 1976]

 Many research groups working on this technique ...

 Path feasibility analysis and constraint solving

 [Zhang 2000] [Zhang-Wang 2001]

 Constraint Solving and Symbolic Execution

[Zhang VSTTE2005]

A path in bubble-sort

 i = n-1;

 @ i > 0;

 indx = 0;

 j = 0;

 @ j < i;

 @ a[j+1] < a[j];

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 indx = j; j = j+1;

 @ j >= i;

 i = indx;

 @ i <= 0;

 Path condition:

 n-1 > 0

 a[1] < a[0]

 n-1 <= 1

Input data: n = 2

 a[]: { 3, 2 } or { 8, 1} or …

Checking areas (rather than points) in the input space.

Symbolic Execution

Test Generation and Bug Finding via Symbolic Execution

 Finding one point in any area

Satisfiability Checking (SAT solving)

 Example Input:

 p cnf 3 3

 1 2 3 0

 -1 -2 0

 -2 -3 0

 denoting the following formula:

 (p1 OR p2 OR p3) AND

 (NOT p1 OR NOT p2) AND

 (NOT p2 OR NOT p3)

 p1

 p2

Binary search tree

F T

Satisfiability Modulo Theories (SMT)

solvers – CVC3/CVC4, Yices, Z3, …

 x3, x2, x1, x0: INT;

 CHECKSAT (x0 >= 0 AND x0 <= 9 AND

x1 >= 0 AND x1 <= 9 AND x2 >= 0 AND

x2 <= 9 AND x3 >= 0 AND x3 <= 9 AND

(x0 > 0 OR x1 > 0 OR x2 > 0 OR x3 > 0)

AND 1000*x0 + 100*x3 + 10*x2 + x1 =

2000*x3 + 200*x2 + 20*x1 + 2*x0);

Constraint Solver: BoNuS (1999-2001)
[Zhang 2000] [ZhangWang 2001]

 Example.
 enum { Male, Female } gender;

 int age;

 bool b = (age > 18);

 bool married;

 {

 and(not(b), married);

 }

Search proc. (simple SMT solving)

p

q !q

p: (x>3)

q: (2*x > 5)

Check the feasibility of:

 x>3; 2*x <= 5

Linear programming:

 lp_solve

Constraint Solving + Symbolic Execution

[Zhang VSTTE 2005 (LNCS 4171)]

 verify – or find bugs in – certain programs

 check the error messages produced by other

static analyzers, to eliminate some false alarms

 automate an important part of unit testing, i.e.,

generating test cases (input data) for the

program

 generate test cases for black-box testing or

model-based testing, if a proper specification

(like EFSM) is provided.

Unit Testing – Stmt/branch coverage

Examples: GNU coreutils [XZ 2006]

 remove_suffix() in basename.c

 cat() in cat.c

 cut_bytes() in cut.c

 parse_line() in dircolors.c

 set_prefix() in fmt.c

 attach() in ls.c

 bsd_split_3() and hex_digit() in md5sum.c

Example. GNU make: dir.c
char *dosify(char filename[20]) {

 …

 for (i = 0; *filename != '\0' && i < 8 &&…; i++) {

 *df = *filename; df++; filename++;

 }

 if (*filename != '\0') {

 *df = *filename; df++; filename++;

 for (i = 0; *filename != '\0' && i < 3 &&…; i++) {

 *df = *filename; df++; filename++;

 }

}

Test suite: 3 test cases  100% branch coverage

Static Analysis of C programs

 inter-procedural, path sensitive tools for

finding memory leak

[Xu-Zhang, 2008] on top of LLVM

[Xu-Zhang-Xu, 2011] melton, on top of

Clang static analyzer

 Canalyze -- a tool for finding various

kinds of bugs (e.g., NULL pointer

dereferencing; undefined return value; …)

Bugs Found in Open Source Software

Software KLoC Undef.

value

NULL

ptr

Mem.

leak

Use after

free

libosip2-4.0.0 28.9 √ √ √

libosip2-3.6.0 29.0 √

lighttpd-1.4.32 46.3 √ √ √

Openssh-5.9p1 89.8 √

wget-1.13 91.8 √ √

sqlite-3.7.11 139.2 √

Coreutils-8.15 202.3 √

Coreutils-8.17 211.9 √

sed-4.2 30.4 √

glibc-2.15 1020.5 √

Error in Openssh-5.9p1

 //in file sshconnect2.c

authmethod_get(...) {

 ...

 for(; ;) {

 if ((name = match_list(…)) == NULL){//Allocate heap space to name

 }

 …

 if (…) {

 …

 xfree(name);

 return …;

 }

 }//end for

 if (name) xfree(name);

}

Ex. bug report -- bftpd

 From: "Jesse Smith" <jessefrgsmith@yahoo.ca>

Date: 2013-5-28

Subject: Re: Some potential bugs in bftpd-3.8

To: "Zhenbo Xu" <zhenbo1987@gmail.com>

I had a chance to examine your bug reports for Bftpd.

All of the problems you reported are correct. The

memory handling for bftpd_cwd_mappath() was an

especially bad bug.

All of these bugs have been fixed in my copy of the

code and I will be releasing a new version of Bftpd

soon …

Finding Bugs Related to

Floating-point numbers

• Divide by zero

• One operand much larger than the other

• …

To detect such problems, we may need to
solve constraints like:

((11 * a2 * b2 - b6 - 121 * b4)*16777216) < 3

Finding witnesses for data race bugs

Data race – severe concurrency bug

• [Said et al. 2011]

• …

• [Huang-Meredith-Rosu 2014]

We need to solve constraints like:

 X10-X3 = 1; X5<X7 or X9<X2; …

Detecting Resource Leak in Android Apps

Resources:

• exclusive (e.g., Camera)

• memory consuming (e.g., MediaPlayer)

• energy consuming (e.g., SensorManager)

Resource request and release operations

Tool: Relda [Guo et al. 2013]

Benchmarks: Baidu, Taobao, Tencent, …

Example.

 private void initCamera() throws IOException

 { if(!bIfPreview)

 { //If the camera is not in preview mode, turn it on.

 mCamera = Camera.open(); }

 if (mCamera != null && !bIfPreview)

 { mCamera.startPreview(); bIfPreview = true; }

 }

 private void resetCamera()

 { if (mCamera != null && bIfPreview)

 { mCamera.stopPreview();

 mCamera.release();

 }

 }

Technology Transfer

 need from industry

 power of the tool

 Commercialization … ??

Combinatorial Testing

 Black-box testing technique

 The system-under-test (SUT) has a set

of parameters/components, each of

which can take some values.

 Example:

Browser: IE, Chrome, Firefox, ...

Operating system: Linux, Windows XP, ...

Manufacturer: Dell, Lenovo, HP, ...

Constraints in CT

 Example of constraints:

 not ((Browser==IE) && (OS==Linux))

 [Arcuri and Briand 2012] "in the presence of

constraints, random testing can be worse

than combinatorial testing"

Constraints used everywhere

 static program analysis (bug finding)

 combinatorial testing

 [DeMillo-Offutt ~1990], …

 KLEE, SAGE, …

 Workshop on the Constraints in

Software Testing, Verification and

Analysis (CSTVA)

All kinds of Constraints

 Linear inequalities: x+2y < 3

 Integer difference constraints: x-y < 2

 Non-linear constraints: 2xy+z = 8

 Propositional formulas: (p || ~q) && r

 SMT formulas: (x-y>5) || (x+2y<16)

 …

Extensions to SMT Solving

Extension to SMT solving (I)

 Finding 1 solution Finding the best solution

Logic +

arithmetic

Linear

Inequalities

SMT-opt

LP, …

SMT

Linear

programming

Optimization w.r.t. complex

constraints

 Linear Programming

 min. f(X)

 s.t. Ax <= b

 SMT optimization

 min. f(X)

 s.t. constraints in SMT

form

A Simple Example

min. x - y

subject to:

(((y + 3x < 3)  (30 < y)) ∨ (x <= 60))

∧ ((30 < y)  ┐(x > 3) ∧ (x <= 60))

Stress Testing – test data gen.

 Extract paths from some model (e.g., activity

diagram).

 From the path, obtain resource consumption

information.

 Generate constraint solving/optimization

problems.

 Solve them !

[Zhang-Cheung 2002]

min:-100 (x00-x01) -1200 (x10-x11) -1800 (x20-

x21) -56 (x30-x31) -1500 (x40-x41) -150 (x50-x51)

-1440 (x60-x61) -25 (x70-x71) -200 (x80-x81) -230

(x90-x91)

u1 = 1; r1 = 1; v0 <= 25; s0 <= 25; u0 = v1; r0 = s1;

u1 <= u0; x01 = u1 or x11 = u1 or x21 = u1; x00

<= u0; x10 <= u0; x20 <= u0; x01 = x21; x10 = x20;

x00 - x01 <= 5; x10 - x11 <= 6; x20 - x21 <= 15; v1

<= v0; x31 = v1 or x41 = v1; …

Extension to SMT solving (II)

 solution? #of solutions

Logic+

arithmetic

prop.

Logic

Vol.comput.

SAT

SMT

model

counting

Compute volume / solution density

 Given an SMT formula (a set of

constraints), compute the volume of its

solution space (or its solution density).

 Example. Φ :=

 (((y+3x<1) →(30<y)) ∨(x ≤60)) ∧((30<y) →

﹁(x>3) ∧(x ≤60))

 High complexity: #p-hard even for a single

convex polyhedron

Solution counting [MaLiuZhang 2009]

p

q !q

p: (x>3)

q: (2*x > 5)

Check the #of solutions of:

 x>3; 2*x <= 5

Vol. computing for polytopes:

 vinci

Estimate the volume of polytopes

 Simple Monte-Carlo algorithm

 [Liu-Zhang-Zhu 2007]

 PolyVest [Ge-Ma-Zhang 2013]

A Testing Problem as a By-product

 How do we know the “reliability” of the method?

 How do we know the accuracy of the results?

Testing PolyVest
Relation r1:

Results:

Dimension Vol(V) Vol(V1) Vol(V2) Vol(V1+V2) Deviation

5 814.03 573.792 254.765 828.557 +1.78%

8 829.167 323.116 435.406 758.522 -8.52%

14 16961.6 8594.56 8302.33 16896.89 -0.38%

20 1.101e+12 2.412e+11 8.332e+11 1.074e+12 -2..45%

 V= V1+V2

’
’ 


V
(V,V)

V
Deviation

V

Testing PolyVest
Relation r2:

Results:

V1: Ax <= b

V2: Ax <= nb

Dimension of x is m

Dimension Vol(V1) n n^m expected Vol(V2) Deviation

5 848.758 5 3125 2.652e+06 2.620e+06 -1.21%

8 815.157 3 6561 5.348e+06 5.259e+06 -1.66%

14 15631.2 3 4.782e+06 7.485e+010 7.585e+10 +1.34%

20 1.048e+12 2 1.049e+06 1.099e+18 1.135e+18 +3.28%

’
’ 


V
(V,V)

V
Deviation

V

Constraint Solving and Symbolic

Execution [Zhang VSTTE2005]

 Verification

 Static analysis

 Testing

“We can also perform other kinds of analysis

which are not so related to the correctness of

programs.” (page 544)

Branch/Path Execution Frequency

Computation

Checking areas (rather than points) in the input space.

What are the sizes of the areas? How much is covered?

Symbolic Execution

Branch selection--

Example

int x;

@ ((x <= 100) && (x > 20))

{

 x = x - 10;

 if (x > 30)

 ... //TRUE branch

 else

 ... //FALSE branch

}

 TRUE branch

 75% (3/4)

 FALSE branch

 25% (1/4)

Constraints:

 (a <=100)&&(a > 20)

 (a-10 > 30)

 (a <=100)&&(a > 20)

 (a-10 <= 30)

int x;

@ ((x <= 50) && (x > 20))

{

 x = x - 10;

 if (x > 30)

 ... //TRUE branch

 else

 ... //FALSE branch

}

 TRUE branch: 1/3

 FALSE branch: 2/3

Constraints:

 (a <= 50)&&(a > 20)

 (a-10 > 30)

 (a <= 50)&&(a > 20)

 (a-10 <= 30)

Path execution frequency -- Example.

int getop(s,lim)

 char s[]; int lim;

{

 int i, c;

 while ((c=getchar()) == ' ' || c == '\t' || c == '\n') ;

 if (c != '.' && (c < '0' || c > '9')) return(c);

 s[0] = c;

 for(i = 1; (c=getchar()) >= '0' && c <= '9'; i++)

 if (i < lim) s[i] = c;

 if (c == '.') { if (i < lim) return(c); … }

}

 Path 1

 1 → 2 → 4 → 5 → 27.

 XP(Path1) ≈ 0.945

 Path 2

 1 → 2 → 4 → 7 → 11 →

19 → 20 → 27.

 XP(Path2) ≈ 0.021

Performance Estimation Based on

Symbolic Execution & Volume Computing

Estimating A Program’s Performance

 δ(P) -- the number of solutions of the path

condition ( path exec. frequency).

 Symbolic benchmarking

• Generate some paths;

• Calculate the performance of each path -- PIND(Pi)

• Estimate Performance of the program:

 PIND(P1)* δ(P1) + PIND(P2)* δ(P2) + …

Example. Bubble sort

for(i = 0; i < N-1; i++)

 for(j = N-1; j > i; j--) {

 if (a[j-1] > a[j])

 swap(a[j-1], a[j]);

 }

Analysis of bubble sort

N=4: 24 paths. (δ: ~ the same for each path)

 For each path, the number of

comparisons is the same (6).

 But the number of swaps is different,

ranging from 0 to 6. The total number of

swaps for all the 24 paths is 72.

 On average (when N=4), it needs 3

swaps of array elements and 6

comparisons between array elements.

Example. FIND [Hoare 1971]

Input: array A; size N; int f;

Output:

 A[0], A[1], ..., A[f-1]

 <= A[f]

 <= A[f+1], ..., A[N-1].

benchmarking -- I

 Randomly choose some paths

 (N=8, f=3)

Path nComp nSwap Delta(P)

w11 9 3 16303680

w16 9 2 12191040

w18 9 3 16303680

w20 9 2 12191040

benchmarking -- II

Randomly generate some input data

 { -2, 5, 6, 3, 1, 0, -7, 6 };

 { 2, 0, -2, -8, 4, -4, 5, 1 };

 Average #of swaps: 4.04

 (4075920*4 + 87516*6) / (4075920+87516) ≈ 4.04

Path nSwap Delta(P)

R1 4 4075920

R6 6 87516

Symbolic Benchmarking

Symb. execution  symb. benchmarking

• one symb. exec. == many conc. exec.

Given the program

 generate paths from the flow graph; or

 run the program a number of times

 calculate the PIND and Delta values

 get the estimated performance of the prog.

 (weighted sum of the PINDs)

Reliability of

Component-Based Software Systems

Reliability of Component-based Syst.

 reliability of components  reliability of
systems ?

• execution frequency calculation

• …

Existing Works:

[Hamlet-Mason-Woit 2001] Theory of software
reliability based on components

System design – control structures:
sequences, conditionals, loops, …

("A supporting tool would …")

Existing Works:

[Palviainen, Evesti, Ovaska 2011] The reliability
estimation, prediction and measuring of
component-based software

Model-based reliability prediction/measuring

State transition matrix – each element of the
matrix Psa denotes the probability of moving
from state s to state a.

A tool chain …

Summary

 All kinds of constraints

Linear/non-linear inequalities

SAT ---- (p or not q) and (not p or q)

SMT ---- (x+y >= 3) and good and (x-y != 8)

Decision problem  counting, optimization

 Testing, analysis, reliability, security …

Acknowledgement
• Jun Yan

• Feifei Ma

• Zhongxing Xu

• Zhenbo Xu

• Zhiqiang Zhang

• Tianyong Wu

• Xingming Wu

• Cunjing Ge

• Chaorong Guo

• Yanli Zhang

THANK YOU !

